Grupo de Investigación de Compuestos Heterocíclicos, Department of Chemistry, Universidad del Valle, A. A. 25360, Cali, Colombia. 2

Silvia Cruz
Department of Chemistry, Universidad de Nariño, A.A. 1175, Pasto, Colombia
Manuel Nogueras,* José Manuel de la Torre
Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
Maximiliano Sortino and Susana Zacchino

Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina

Received May 19, 2005

The reaction of 6 -aminopyrimidin-4-ones $\mathbf{1}$ with benzaldehydes $\mathbf{2}$ and β-aminocrotononitrile $\mathbf{3}$ or benzoylacetonitrile $\mathbf{4}$ under microwave irradiation in dry media yields the 6 -cyano-5,8-dihydropyrido[2,3-d]pyrimidinones 5a-t. The structure of the synthesized compounds was determined on the basis of nmr measurements, especially by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-,{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ COSY, DEPT and NOESY experiments. In contrast with other pyrido-[2,3- d] pyrimidine derivatives, these compounds did not show any antifungal in vitro activity up to $250 \mu \mathrm{~g} / \mathrm{mL}$.
J. Heterocyclic Chem., 43, 299 (2006).

Introduction.
The so-called Multi-component reactions (MCRs), in which more than two starting materials together in a reaction vessel combine to form a final product, have been efficiently used to generate chemical diversity in a few reaction steps [1]. Compared to conventional organic reactions, MCRs show the advantages of being highly convergent and easy to perform. In particular, MCRs have been fruitful for the versatile synthesis of heterocycles by a sequence of an initial MCR followed by ring closure reaction [1].
In turn, high-speed syntheses with microwave have attracted considerable attention in recent years [2]. The potential application of microwave technology in organic synthesis [3], particularly in free-solvent conditions, is increasing at a good rate because of its reaction simplicity, less pollution, and minimum reaction time providing rapid access to large libraries of diverse molecules.
The synthesis of pyridopyrimidine and their derivatives is of high interest in medicinal chemistry, because some of
them possess biological and pharmacological activities, such as antifolate [4], antibacterial [5], tyrosine kinase [6], antimicrobial [7], calcium channel antagonists [8], antiinflammatory and analgesic [9], antileishmanial [10], tuberculostatic [11], anticonvulsants [12], diuretic and potassium-sparing [13], antiaggressive [14] and antifungal [15] activities. In addition, pyridopyrimidines are used as growth promoters, herbicides, agricultural fungicides and UV absorbants [16].

Results and Discussion.
In this paper, we describe a facile three-component, onespot condensation induced by microwave, between 2,3-substituted-6-aminopyrimidines $\mathbf{1}$ with $\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}$ and R^{\prime} $=\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{NH}_{2}, 4$-substituted benzaldehydes 2 and β-aminocrotononitrile 3 or benzoylacetonitrile 4, which gave 6-cyanopyridopyrimidines 5a-t (Scheme 1; yield, time of reaction and melting points of compounds 5a-t are recorded in Table 1). The equimolar amounts of starting
compounds such as amines, nitriles and aldehydes, were placed into pyrex-glass open vessels and irradiated in a microwave oven (600 W) for 2-15 minutes.

Scheme 1

$\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}$
$\mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{NH}_{2}$

The structures of all obtained compounds were assigned by ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (Table 2 and 3) and mass spectrometry (see experimental part). Based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT, HSQC, HMBC and NOESY techniques, it was possible to assign all protons and carbon atoms of new products.

For example, compound $\mathbf{5 b}$ shows five singlets at 2.04, 2.47, 4.57, 9.91 and 12.36 ppm corresponding to CH_{3} at position $7, \mathrm{CH}_{3} \mathrm{~S}$ at position 2 , methynic proton (H-5), NH (H-8, deuterium exchangeable proton) and NH (H-3, deuterium exchangeable proton), respectively; two doublets at 7.22 and $7.40 \mathrm{ppm}\left({ }^{3} J=8.2 \mathrm{~Hz}\right)$, corresponding to H_{o} and

Table 1
Microwave-assisted Synthesis of 6-Cyanopyridopyrimidines 5a-t

| Comp. | R | R^{\prime} | $\mathrm{R}^{\prime \prime}$ | Ar | $\mathrm{mp},{ }^{\circ} \mathrm{C}$ | Yield , \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 2
${ }^{1} \mathrm{H}$ NMR chemical shifts (δ in ppm) of compounds 5a-t

Comp.	$\begin{gathered} \mathrm{R} \\ (\mathrm{~s}) \end{gathered}$	$\begin{aligned} & \mathrm{R}^{\prime} \\ & \text { (s) } \end{aligned}$	$\begin{gathered} 7-\mathrm{CH}_{3} \\ (\mathrm{~s})^{[a]} \end{gathered}$	$\begin{gathered} 5-\mathrm{H} \\ (\mathrm{~s}) \end{gathered}$	$\begin{gathered} 8-\mathrm{H} \\ \text { (s) } \end{gathered}$	5-Aryl (dd) ${ }^{[b]}$	
						o	m
5a	3.33	2.57	2.11	4.59	9.89	7.23	7.36
5b	12.36	2.47	2.04	4.57	9.91	7.22	7.40
5c	11.95	3.87	2.17	4.54	9.88	7.21	7.39
$5 d$	10.39	6.42	2.06	4.47	9.45	7.20	7.35
5e	11.98	2.47	2.10	4.48	9.84	6.66	-6.84
5 f	10.41	6.37	2.05	4.45	9.41	7.05	7.23
5g	10.39	6.35	2.05	4.37	9.35	6.81	7.10
5h	12.37	2.49	2.09	4.56	9.88	7.08	7.27
5 i	11.98	3.87	2.09	4.54	9.86	7.08	7.26
5j	12.42	2.41	2.05	4.75	10.00	7.49	8.19
5k	12.11	3.86	7.50-7.53	4.70	10.20	7.34	7.41
51	12.50	2.49	7.52-7.54	4.73	10.23	7.34	7.43
5m	3.36	2.57	7.51-7.59	4.76	10.24	7.35	7.42
5n	11.49	3.88	7.15-7.22	4.60	10.11	6.73	6.93
50	3.19	3.96	7.48-7.56	4.63	10.13	6.88	7.26
5p	12.45	2.53	7.49-7.56	4.63	10.17	6.89	7.25

Table 2 (continued)

Comp.	R (s)	R^{\prime} (s)	$7-\mathrm{CH}_{3}$ $(\mathrm{~s})^{[\mathrm{a}]}$	$5-\mathrm{H}$ (s)	8-H (s)	5-Aryl $(\mathrm{dd})^{[\mathrm{b}]}$		
						o		m
:---								

[a] Multiplet for $\mathbf{5 k - t}$; [b] Multiplet for $\mathbf{5 e}, \mathbf{r - t}$; [c] δ for $\mathrm{OCH}_{2} \mathrm{O}$-group of compound 5e 5.97; [d] ppm; for OCH_{3} of compounds $\mathbf{5 g}$, $\mathbf{n - q} 3.71$, $3.83,3.73,3.73$ and 3.74 ppm , respectively.
H_{m} of $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$ - substituent at position 5 of pyridine ring (Table 2).

Multiplicity of carbon atoms was determined by ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DEPT-135 experiment) spectroscopy where mainly the signals at 12.7, 17.9 and 38.1 ppm corresponding to methyl-

Table 3
${ }^{13} \mathrm{C}$ NMR chemical shifts (δ in ppm) of compounds $\mathbf{5 a - t} \mathbf{t}^{[a]}$.

	R	R^{\prime}	C-2	C-4	C-4a	C-5	C-6	C-7	C-8a	7-R"	CN
$\mathbf{5 a}$	-	12.6	150.9	161.5	94.3	38.4	83.1	148.2	144.1	17.8	120.0
$\mathbf{5 b}$	28.1	12.7	151.7	161.2	94.4	38.1	83.2	148.1	144.0	17.9	119.7
$\mathbf{5 c}$	-	54.8	157.1	161.9	92.4	38.3	83.3	148.0	144.3	17.8	119.7
$\mathbf{5 d}$	-	-	153.6	162.9	88.3	38.1	82.6	148.2	144.3	17.8	120.1
$\mathbf{5 e}$	-	12.6	151.1	163.1	94.8	38.1	83.6	147.1	147.6	17.1	119.7
$\mathbf{5 f}$	-	-	153.7	162.5	88.7	38.0	83.0	148.1	147.8	17.9	120.2
$\mathbf{5} \mathbf{~}$	-	-	154.2	161.3	89.0	37.7	83.3	153.4	147.5	17.7	120.3
$\mathbf{5 h}$	-	12.7	159.5	162.7	94.7	37.9	83.4	151.7	147.9	17.8	119.7
$\mathbf{5 i}$	-	54.7	152.1	162.7	92.7	37.9	83.5	152.1	147.8	17.7	119.7
$\mathbf{5 j}$	-	12.7	152.1	161.7	93.8	38.8	82.4	151.9	148.7	17.9	119.4
$\mathbf{5 k}$	-	54.7	156.9	161.9	92.6	39.3	83.7	149.9	152.3	119.9	
$\mathbf{5} \mathbf{5}$	-	12.5	156.5	161.5	94.5	38.8	83.6	149.9	152.0	119.8	
$\mathbf{5 m}$	29.8	14.3	160.1	161.9	93.6	40.3	83.7	149.9	150.0	119.8	
$\mathbf{5 n}$	-	54.9	157.4	161.9	90.8	39.8	80.7	149.3	155.4	120.2	
$\mathbf{5 0}$	27.3	55.7	158.2	160.7	92.6	39.1	84.4	149.4	150.3	120.2	
$\mathbf{5} \mathbf{p}$	-	12.5	158.2	161.5	95.1	38.3	84.3	149.3	151.5	120.1	
$\mathbf{5 q}$	29.7	14.2	160.1	161.5	94.3	39.0	84.3	149.3	149.8	120.0	
$\mathbf{5 r}$	-	12.5	156.9	161.3	94.9	39.7	84.0	149.7	151.8	120.0	
$\mathbf{5 s}$	29.8	14.3	160.1	161.7	94.0	39.9	84.1	149.7	150.1	120.0	
$\mathbf{5 t}$	-	54.6	156.8	162.0	92.9	39.3	84.1	149.7	152.3	120.1	

[a] δ for $\mathrm{OCH}_{2} \mathrm{O}$-group of compound $\mathbf{5 e} 100.9 \mathrm{ppm}$ and for $\mathrm{CH}_{3} \mathrm{O}$ of compounds $\mathbf{5 g}, \mathbf{n} \mathbf{- q} 54.9,54.6,54.9,55.9$ and 54.9 ppm , respectively.
groups $\left(\mathrm{CH}_{3} \mathrm{~S}\right.$ and CH_{3} at position 7) and $\mathrm{C}-5$, respectively were observed. Complete assignments of the carbon atoms using HSQC, HMBC and NOESY experiments allowed us the structure-elucidation of compounds 5a-t (Table 3).
We assume that the synthesis of $\mathbf{5 a - t}$ as following: 1) addition of the most basic ring carbon atom in aminopyrimidine $\mathbf{1}$ to the activated double bond of intermediate $\mathbf{6}$ via the Michael type reaction (the latter 6 is formed by Knovenagel condensation between benzaldehyde 2 and β aminocrotononitrile 3 or benzoylacetonitrile 4), 2) posterior enamine-imine or enamine-ketone cyclization of 7 and 3) elimination of ammonia or water molecule, respectively, to form the dihydropyridine nucleus (Scheme 2) [17].
mation of the benzylidene derivative of β-aminocrotononitrile or benzoylacetonitrile $\mathbf{6}$ as an intermediate of the reaction in study, was confirmed by the direct interaction of amines $\mathbf{1}$ with the previously synthesized benzylidene derivatives 6 using microwave irradiation. Under the same conditions, this reaction led to the same 5-aryl-6-cyano-5,8-dihy-dropyrido[2,3- d]pyrimidin-4(3H)-ones 5.

It is important to point out that when the mixture of aminopyrimidines 1, benzaldehydes $\mathbf{2}$ and 4,4-dimethyl-3oxopentanonitrile 9 was irradiated during 8-12 minutes, the reaction leads in all cases to the stable products $\mathbf{1 0}$ (Scheme 3) with traces, in some cases, of compound 11. Nevertheless, a prolonged irradiation does not lead to the

Scheme 2

As an evidence of the proposed reaction route we isolated the intermediate $\mathbf{8}\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}, \mathrm{X}=\mathrm{O} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime \prime}\right.$ $=\mathrm{C}_{6} \mathrm{H}_{5}$), which upon a new irradiation time (6-10 minutes) lose a water molecule yielding 5-aryl-6-cyano-5,8-dihy-dropyrido[2,3- d]pyrimidin-4(3H)-ones 5. The probable for-
formation of the target pyridopyrimidines analogues to 5a-t. We consider that the presence of the bulky tert-butyl group hinder first, the effective formation of compound $\mathbf{1 1}$ and afterwards the Michael addition of the basic ring carbon atom of aminopyrimidine $\mathbf{1}$ to the double bond of the
benzylidene derivative $11\left(\mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)$. A similar process with analogues of compound $\mathbf{1 0}$ has been described in the literature [18].
gal strains comprising human opportunistic pathogenic yeasts, hialohyphomycetes as well as dermatophytes with the broth dilution method [19]. Results showed that none of

Scheme 3
$1+2+$

	R	R^{\prime}	Ar	t , min
10a	CH_{3}	$\mathrm{CH}_{3} \mathrm{O}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	6
10b	H	$\mathrm{CH}_{3} \mathrm{O}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	4
10c	H	NH_{2}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	3
10d	CH_{3}	$\mathrm{CH}_{3} \mathrm{O}$	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$	4

Some compounds of series 5a-t together with the analogues 12a-d (Table 4), previously synthesized by conventional procedures (ethanol reflux) [17b], were in vitro assayed for antifungal properties against a panel of 10 fun-
the tested compounds displayed any activity against yeasts and hialohyphomycetes up to $250 \mu \mathrm{~g} / \mathrm{mL}$. In contrast compounds 5a-f and 12a showed activity against dermatophytes with MIC values between $100-200 \mu \mathrm{~g} / \mathrm{mL}$ (Table 4).

Table 4
MIC values $(\mu \mathrm{g} / \mathrm{mL})$ of pyrido[2,3- d]pyrimidines $\mathbf{5 a - c}$, e, f, $\mathbf{l}, \mathbf{n}, \mathbf{q}, \mathbf{s}$ and $\mathbf{1 2 a - d}$ against a panel of yeasts, hialohyphomycetes and dermatophytes

12a $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{O} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
12b $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{O} ; \mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
12c $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{O} ; \mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$
12d $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{~S} ; \mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$

	C.a.	C.t.	S.c.	C.n.	A.f.	A.fl.	A.n.	M.g.	T.r.	T.m.
5a	>250	>250	>250	>250	200	200	200	200	200	200
5b	>250	>250	>250	>250	>250	>250	>250	200	200	100
5c	>250	>250	>250	>250	>250	>250	>250	200	100	200
5e	>250	>250	>250	>250	>250	>250	>250	200	200	100
5f	>250	>250	>250	>250	>250	>250	>250	100	200	200
5l	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
5n	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
5q	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
5s	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
8	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
12a	200	200	200	200	200	200	>250	100	50	50
12b	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
12c	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
12d	>250	>250	>250	>250	>250	>250	>250	>250	>250	>250
Keto	0.5	0.125	0.5	0.25	0.125	0.5	0.25	0.05	0.025	0.025
Amp	1.0	0.5	0.5	0.25	0.5	0.5	0.5			
Terbin								0.04	0.01	0.04

C.a.: Candida albicans ATCC 10231; C.t.: Candida tropicalis C131; S.c.: Saccharomyces cerevisiae ATCC 9763; C.n.: Cryptococcus neoformans ATCC 32264; A.f.: Aspergillus fumigatus ATCC 26934; A.fl.: Aspergillus flavus ATCC 9170, A.n.: Aspergillus niger ATCC 9029; M g:Microsporum gypseum C 115; T.r.: Trichophyton rubrum C113; T.m: Trichophyton mentagrophytes ATCC 9972. Keto= Ketoconazole; Amp=Amphotericin B. Terbin $=$ Terbinafine.

Conclusions.

In conclusion, we have described in this paper the preparation of novel 5-aryl-6-cyano-7-methyl-5,8-dihydro-pyrido[2,3- d]pyrimidines by multicomponent reaction between 6-amino-4-pyrimidinones, benzaldehydes and β aminocrotononitrile or benzoylacetonitrile under the microwave irradiation. Regarding the antifungal properties, some compounds of the series show activity against dermatophytes, fungi causing the most important superficial mycoses in human beings. The antifungal activity showed by compounds 5a-f and 12a, although marginal, could open new avenues for the design of new series of analogues of 6-cyano-6,8-dihydropyrido[2,3- d]pyrimidin$4(3 \mathrm{H})$-ones with better antifungal properties than this series. They could lead to the development of new antifungals useful for the treatment of dermatophytoses, mycoses very difficult to eradicate.

EXPERIMENTAL

Melting points were determined in a Büchi Melting Point Apparatus and are uncorrected. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were run on a Bruker DPX 300 spectrometer operating at 300 MHz and 75 MHz respectively, using dimethyl sulfoxide- d_{6} as solvent and tetramethylsilane as internal standard. The massspectra were scanned on a Hewlett Packard HP Engine-5989 spectrometer (equipped with a direct inlet probe) and operating at 70 eV . The elemental analyses have been obtained using a LECO CHNS-900 equipment.

General Procedure of Preparation of Pyrido[2,3- d]pyrimidin$4(3 H)$-ones (5a-t).

Equimolar amounts of amine 1, aldehyde 2 and β aminocrotononitrile $\mathbf{3}$ or benzoylacetonitrile $\mathbf{4}$ were placed into pyrex-glass open vessels and irradiated in a domestic microwave oven for $2-15 \mathrm{~min}$. (at 600 watts) as indicated in Table 1. The solid was crushed with ethanol and filtered. The products 5 were recrystallized from absolute ethanol and analyzed (see also Tables 1-3 for some physical and chemical data).
5-(4-Chlorophenyl)-6-cyano-3,7-dimethyl-2-methylsulfanyl-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-one (5a).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=360 / 358\left(5 / 12, \mathrm{M}^{+}\right)$, 247 (100, M ${ }^{+}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 199 (25), 171 (5), 88 (8).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C}, 56.90 ; \mathrm{H}, 4.21 ; \mathrm{N}, 15.61$. Found: C, 56.81; H, 4.14; N, 15.73.

5-(4-Chlorophenyl)-6-cyano-7-methyl-2-methylsulfanyl-5,8dihydropyrido $[2,3-d]$ pyrimidin-4(3H)-one (5b).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=346 / 344\left(4 / 9, \mathrm{M}^{+}\right), 233$ ($100, \mathrm{M}^{+}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 185 (21).
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C}, 55.73 ; \mathrm{H}, 3.80 ; \mathrm{N}, 16.25$. Found: C, 55.65; H, 3.72; N, 16.31.
5-(4-Chlorophenyl)-6-cyano-7-methyl-2-methoxy-5,8-dihy-dropyrido[2,3- d]pyrimidin-4(3H)-one (5c).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=330 / 328\left(3 / 8, \mathrm{M}^{+}\right), 217$ ($100, \mathrm{M}^{+}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 185 (12), 174 (6), 130 (5), 75 (7).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$: C, 58.46; H, 3.99; N, 17.04. Found: C, 58.33; H, 3.91; N, 17.15.

2-Amino-5-(4-chlorophenyl)-6-cyano-7-methyl-5,8-dihydropy-rido[2,3- d]pyrimidin-4(3H)-one (5d).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=315 / 313\left(2 / 5, \mathrm{M}^{+}\right), 203$ (14), 202 ($100, \mathrm{M}^{+}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 185 (17), 126 (28), 111 (10), 98 (12), 75 (19), 68 (14), 55 (10), 44 (14), 43 (74).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}: \mathrm{C}, 57.42 ; \mathrm{H}, 3.86 ; \mathrm{N}, 22.32$. Found: C, 57.35; H, 3.95; N, 22.23.
5-(3,4-Dioxomethylenphenyl)-6-cyano-7-methyl-2-methylsul-fanyl-5,8-dihydropyrido[2,3- d]pyrimidin-4(3H)-one (5e).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=355(8), 354\left(34, \mathrm{M}^{+}\right)$, 234 (16), 233 ($100, \mathrm{M}^{+}-3,4-\mathrm{OCH}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5}$), 185 (22), 122 (8), 65 (8).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 57.62 ; \mathrm{H}, 3.98 ; \mathrm{N}, 15.81$. Found: C, 57.70; H, 3.86; N, 15.85.

2-Amino-5-(4-fluorophenyl)-6-cyano-7-methyl-5,8-dihydropy-rido[2,3- d]pyrimidin-4(3H)-one (5f).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=297\left(6, \mathrm{M}^{+}\right), 203(14)$, 202 (100, $\mathrm{M}^{+}-4-\mathrm{FC}_{6} \mathrm{H}_{4}$), 185 (21), 158 (5), 132 (8), 95 (13), 75 (18), 43 (30).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FN}_{5} \mathrm{O}: \mathrm{C}, 60.60 ; \mathrm{H}, 4.07$; N, 23.56. Found: C, 60.53; H, 4.13; N, 23.49.

2-Amino-5-(4-methoxyphenyl)-6-cyano-7-methyl-5,8-dihy-dropyrido[2,3- d]pyrimidin-4(3H)-one (5g).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=309\left(13, \mathrm{M}^{+}\right), 307(6)$, 203 (15), 202 ($100, \mathrm{M}^{+}-4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$), 185 (14), 108 (10), 92 (13), 77 (13), 64 (12), 44 (12), 43 (37), 42 (19).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}: \mathrm{C}, 62.13 ; \mathrm{H}, 4.89 ; \mathrm{N}, 22.64$. Found: C, 62.20; H, 4.77; N, 22.59 .

6-Cyano-5-(4-fluorophenyl)-3,7-dimethyl-2-methylsulfanyl-5,8dihydropyrido $[2,3-d]$ pyrimidin- $4(3 \mathrm{H})$-one ($\mathbf{5 h}$).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=329(10), 328\left(15, \mathrm{M}^{+}\right)$, 234 (15), 233 (100, M ${ }^{+}-4-\mathrm{FC}_{6} \mathrm{H}_{4}$), 185 (17).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{OS}: \mathrm{C}, 58.52 ; \mathrm{H}, 3.99 ; \mathrm{N}, 17.06$. Found: C, 58.46; H, 4.04; N, 17.15.
6-Cyano-5-(4-fluorophenyl)-3,7-dimethyl-2-methoxy-5,8-dihy-dropyrido[2,3- d]pyrimidin-4(3H)-one (5i).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=312\left(13, \mathrm{M}^{+}\right), 218(16)$, 217 (100, M ${ }^{+}-4-\mathrm{FC}_{6} \mathrm{H}_{4}$), 185 (14), 174 (7).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{O}_{2}$: C, 61.54; H, 4.20; $\mathrm{N}, 17.94$. Found: C, 61.61; H, 4.25; N, 17.83.
6-Cyano-3,7-dimethyl-2-methylsulfanyl-5-(4-nitrophenyl)-5,8dihydropyrido $[2,3-d]$ pyrimidin-4(3H)-one ($\mathbf{5 j}$).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=355\left(6, \mathrm{M}^{+}\right), 353(4)$,

234 (13), 233 (100, $\mathrm{M}^{+}-4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$), 185 (22), 157 (8), 130 (8), 76 (11), 74 (10), 50 (9), 42 (8).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 54.08 ; \mathrm{H}, 3.69$; N, 19.71. Found: C, 54.15; H, 3.61; N, 19.82.

5-(4-Chlorophenyl)-6-cyano-2-methoxy-7-phenyl-5,8-dihy-dropyrido[2,3-d]pyrimidin-4(3H)-one (5k).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=392 / 390\left(3 / 7, \mathrm{M}^{+}\right)$, 295/293 (1/19), 280 (19), 279 (100, $\mathrm{M}^{+}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 247 (8), 236 (5), 192 (6), 77 (4), 75 (5).

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}$: C, 64.54; $\mathrm{H}, 3.87 ; \mathrm{N}, 14.34$. Found: C, 64.60; H, 3.75; N, 14.24.

5-(4-Chlorophenyl)-6-cyano-2-methylsulfanyl-7-phenyl-5,8dihydropyrido $[2,3-d]$ pyrimidin- $4(3 H)$-one (51).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=408 / 406\left(3 / 8, \mathrm{M}^{+}\right)$, 298/296 (5/20), 297 (7), 295 (100, $\mathrm{M}^{+}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 247 (13), 192 (7), 77 (4), 75 (5).

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C}, 61.99 ; \mathrm{H}, 3.72 ; \mathrm{N}, 13.77$. Found: C, 61.92; H, 3.75; N, 13.82 .

5-(4-Chlorophenyl)-6-cyano-2-methylsulfanyl-3-methyl-7-phenyl-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-one (5m).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=422 / 420\left(3 / 8, \mathrm{M}^{+}\right), 309$ (100, $\mathrm{M}^{+}-4-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 261 (16), 192 (12), 111 (5), 88 (19), 51 (4).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C}, 62.78 ; \mathrm{H}, 4.07 ; \mathrm{N}, 13.31$. Found: C, 62.73; H, 4.14; N, 13.26.
6-Cyano-2-methoxy-5-(4-methoxyphenyl)-7-phenyl-5,8-dihy-dropyrido[2,3-d]pyrimidin-4(3H)-one (5n).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=386\left(13, \mathrm{M}^{+}\right), 309(51)$, 279 (100, M $\left.{ }^{+}-4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right), 261$ (15), 247 (12), 192 (18), 141 (16), 121 (17), 111 (10), 77 (48), 58 (27), 39 (16).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 68.38 ; \mathrm{H}, 4.70 ; \mathrm{N}, 14.50$. Found: C, 68.31; H, 4.66; N, 14.62.
6-Cyano-2-methoxy-5-(4-methoxyphenyl)-3-methyl-7-phenyl-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-one (50).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=400\left(17, \mathrm{M}^{+}\right), 293(100$, $\mathrm{M}^{+}-4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$), 236 (10), 192 (7), 77 (7).

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 68.99; H, 5.03; N, 13.99. Found: C, 68.88; H, 5.11; N, 13.91.

6-Cyano-5-(4-methoxyphenyl)-2-methylsulfanyl-7-phenyl-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-one (5p).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=402\left(17, \mathrm{M}^{+}\right), 295(100$, $\mathrm{M}^{+}-4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$), 247 (14), 192 (10), 77 (11).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$: C, 65.65 ; $\mathrm{H}, 4.51 ; \mathrm{N}, 13.92$. Found: C, 65.61; H, 4.46; N, 13.84.
6-Cyano-5-(4-methoxyphenyl)-3-methyl-2-methylsulfanyl-7-phenyl-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-one (5q).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=416\left(18, \mathrm{M}^{+}\right), 309(100$, $\mathrm{M}^{+}-4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$), 261 (19), 192 (12), 88 (16).

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 66.33 ; \mathrm{H}, 4.84 ; \mathrm{N}, 13.45$. Found: C, 66.40; H, 4.79; N, 13.55.
6-Cyano-2-methylsulfanyl-5,7-diphenyl-5,8-dihydropyrido[2,3-d]-pyrimidin-4(3H)-one (5r).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=372\left(8, \mathrm{M}^{+}\right), 295(100$, $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}$), 247 (14), 192 (10), 77 (24), 51 (17).

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 67.72 ; \mathrm{H}, 4.33 ; \mathrm{N}, 15.04$. Found: C, 67.65; H, 4.26; N, 15.11.
6-Cyano-3-methyl-2-methylsulfanyl-5,7-diphenyl-5,8-dihy-dropyrido[2,3-d]pyrimidin-4(3H)-one (5s).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=386\left(8, \mathrm{M}^{+}\right), 309(100$, $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}$), 261 (16), 192 (11), 88 (15), 77 (18), 51 (10).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 68.37 ; \mathrm{H}, 4.69 ; \mathrm{N}, 14.50$. Found: C, 68.46; H, 4.61; N, 14.66.

6-Cyano-2-methoxy-5,7-diphenyl-5,8-dihydropyrido[2,3-d]-pyrimidin-4($3 H$)-one ($\mathbf{5 t}$).

This compound was obtained according to general procedure as white crystals. MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=356\left(9, \mathrm{M}^{+}\right), 280(19)$, 279 (100, $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}$), 247 (8), 192 (8), 77 (11), 51 (10).

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $70.78 ; \mathrm{H}, 4.53 ; \mathrm{N}, 15.72$. Found: C, 70.71; H, 4.44; N, 15.83.
6-Cyano-7-hydroxy-2-methoxy-5,7-diphenyl-5,6,7,8-tetrahydropyrido $[2,3-d]$ pyrimidin- $4(3 H)$-one (8).

This compound was obtained by the same procedure as described for compounds $\mathbf{5}$. Irradiation time 8 min ; white crystals; mp $244{ }^{\circ} \mathrm{C}$; yield 75%; MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=374\left(1, \mathrm{M}^{+}\right)$, 356 (3, M+ ${ }^{+} \mathrm{H}_{2} \mathrm{O}$), 280 (8), 279 (37), 233 (28), 232 (12), 141 (13), 106 (9), 105 (100), 78 (8), 77 (80), 51 (41), 50 (14), 39 (7); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$, dimethyl sulfoxide- $\left.d_{6}\right) 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.14$ $(\mathrm{d}, 1 \mathrm{H}, 6-\mathrm{H}), 4.02(\mathrm{~d}, 1 \mathrm{H}, 5-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{OH}), 7.73(\mathrm{~s}, 1 \mathrm{H}$, $8-\mathrm{NH}), 11.45(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{NH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, dimethyl sulfoxide- $\left.d_{6}\right)$ $40.6(\mathrm{C}-5), 54.1\left(\mathrm{CH}_{3} \mathrm{O}\right), 49.4$ (C-6), 80.7 (C-7), 89.7 (C-4a), $118.6(\mathrm{CN}), 157.5(\mathrm{C}-8 \mathrm{a}), 156.6(\mathrm{C}-2), 161.0(\mathrm{C}=\mathrm{O})$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $67.37 ; \mathrm{H}, 4.85 ; \mathrm{N}, 14.96$. Found: C, 67.46; H, 4.78; N, 14.89.

General Procedure to Accede to Aryl-bis(pyrimidin-5-yl)methanes 10a-d.

Equimolar amounts of amine 1 and 4 -substituted benzaldehyde 2 were placed into pyrex-glass open vessels and irradiated in a domestic microwave oven for $3-6 \mathrm{~min}$. at 600 watts. The solid was crushed with ethanol and collected by filtration. The products 10a-d were recrystallized from absolute ethanol.
Bis(6-amino-2-methoxy-3-methyl-4-oxopyrimidin-5-yl)-4chlorophenylmethane (10a).

This compound was obtained according to general procedure as white crystals; yield 60%; mp $232-4^{\circ} \mathrm{C}$; MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)$ $=434 / 432\left(40 / 100, \mathrm{M}^{+}\right), 278 / 276\left(17 / 45, \mathrm{M}^{+}\right.$- (6-aminopyrimidine)), $72(39), 58(24), 42(13) ; \delta_{H}(300 \mathrm{MHz}$, dimethyl sulfox-ide- $\left.d_{6}\right) 3.20\left(\mathrm{~s}, 6 \mathrm{H}, 3-\mathrm{CH}_{3} \mathrm{~N}\right), 3.92\left(\mathrm{~s}, 6 \mathrm{H}, 2-\mathrm{CH}_{3} \mathrm{O}\right), 5.52(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CH}), 6.96\left(\mathrm{~s}, 4 \mathrm{H}, 6-\mathrm{NH}_{2}\right), 7.03\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right), 7.25\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right) ; \delta_{\mathrm{C}}$ (75 MHz , dimethyl sulfoxide- d_{6}) $27.4\left(\mathrm{CH}_{3} \mathrm{~N}\right), 34.7$ (Cmethynic), $55.2\left(\mathrm{CH}_{3} \mathrm{O}\right), 90.1(\mathrm{C}-5), 127.4,128.5,129.2$ and 138.8 (aromatic), 154.7 (C-2), 160.5 (C-6), 162.9 (C=O).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{6} \mathrm{O}_{4}$: C, 52.72; H, 4.89; N, 19.41. Found: C, 52.85; H, 4.76; N, 19.53.

Bis(6-amino-2-methoxy-4-oxopyrimidin-5-yl)-4-chlorophenylmethane (10b).
This compound was obtained according to general procedure as white crystals; yield 63%; mp $269-71{ }^{\circ} \mathrm{C}$; MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ $(\%)=406 / 404\left(11 / 31, \mathrm{M}^{+}\right), 266 / 264\left(6 / 24, \mathrm{M}^{+}\right.$- (6-aminopyrimidine)), 141 (47), 127 (12), 111 (18), 75 (42), 58 (45), 40 (100); δ_{H} (300 MHz , dimethyl sulfoxide- d_{6}) 3.83 (s, $6 \mathrm{H}, 2-\mathrm{CH}_{3} \mathrm{O}$), 5.43 (d, $1 \mathrm{H}, \mathrm{CH}), 6.75\left(\mathrm{~s}, 4 \mathrm{H}, 6-\mathrm{NH}_{2}\right), 6.80\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right), 7.25\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right)$, $11.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, dimethyl sulfoxide- d_{6}) 33.0 (Cmethynic), $54.1\left(\mathrm{CH}_{3} \mathrm{O}\right), 90.2$ (C-5), 127.3, 128.5, 129.1 and 139.0 (aromatic), 155.6 (C-2), 162.4 (C-6), 163.9 (C=O).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{6} \mathrm{O}_{4}$: C, $50.44 ; \mathrm{H}, 4.23 ; \mathrm{N}, 20.76$. Found: C, 50.36; H, 4.15; N, 20.65 .

Bis(2,6-diamino-4-oxopyrimidin-5-yl)-4-chlorophenylmethane (10c).
This compound was obtained according to general procedure as white crystals; yield 65%; mp $272-4^{\circ} \mathrm{C}$; MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=$ 376/374 (5/16, M ${ }^{+}$), 252/250 (4/19, M ${ }^{+}$- (6-aminopyrimidine)), 126 (13), 98 (8), 68 (10), 43 (100); δ_{H} (300 MHz , dimethyl sulfoxide$\left.d_{6}\right) 5.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}), 6.14\left(\mathrm{~s}, 4 \mathrm{H}, 2-\mathrm{NH}_{2}\right), 6.97\left(\mathrm{~s}, 4 \mathrm{H}, 6-\mathrm{NH}_{2}\right), 7.01$ (d, $2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}$), $7.21\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 9.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, dimethyl sulfoxide- d_{6}) 35.8 (C-methynic), 90.1 (C-5), 127.1, 128.7, 128.8 and 140.6 (aromatic), 153.3 (C-2), 162.3 (C-6), 163.3 (C=O).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{8} \mathrm{O}_{2}$: C, 48.07; H, 4.03; N, 29.90. Found: C, 48.18; H, 4.13; N, 29.79.

Bis(6-amino-2-methoxy-3-methyl-4-oxopyrimidin-5-yl)-4methoxyphenylmethane (10d).

This compound was obtained according to general procedure as white crystals; yield 64%; mp 199-201 ${ }^{\circ} \mathrm{C}$; MS: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ $(\%)=428\left(100, \mathrm{M}^{+}\right), 413$ (7), 339 (7), 274 (92, M ${ }^{+}$- (6 -aminopyrimidine)), 258 (16), 89 (11), 72 (26), 42 (7); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, dimethyl sulfoxide d_{6}) 3.09 ($\mathrm{s}, 6 \mathrm{H}, 3-\mathrm{CH}_{3} \mathrm{~N}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}, 4-$ $\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}$), 3.92 ($\mathrm{s}, 6 \mathrm{H}, 2-\mathrm{CH}_{3} \mathrm{O}$), $5.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}), 6.37$ (s, $4 \mathrm{H}, \mathrm{NH}_{2}$-groups), $6.73\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right), 7.14\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right) ; \delta_{\mathrm{C}}(75$ MHz , dimethyl sulfoxide- d_{6}) $30.6\left(\mathrm{CH}_{3} \mathrm{~N}\right.$), 34.3 (C-methynic), $54.8\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 55.1\left(\mathrm{CH}_{3} \mathrm{O}\right), 90.7(\mathrm{C}-5), 112.9,127.5,131.3$ and 131.7 (aromatic), 154.6 (C-2), 162.1 (C-6), 162.8 (C=O).
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5}$: C, 56.07 ; $\mathrm{H}, 5.65$; N, 19.61. Found: C, 56.15; H, 5.77; N, 19.52.

2-(4-Methoxybenzyliden)-4,4-dimethyl-3-oxopentanonitrile (11).

This compound was obtained as a subproduct in the synthesis of compound $\mathbf{1 0}$. Also, $\mathbf{1 1}$ was obtained by irradiation at 600 watts in a domestic microwave oven for 5 min . of equimolar amounts of amine $\mathbf{1}$ and 4-methoxybenzaldehyde $\mathbf{2}$. The crude solid obtained was crushed with ethanol, filtered and recrystallized from absolute ethanol; mp $87-89^{\circ} \mathrm{C}$; yield 15%; MS: (70 eV) $\mathrm{m} / \mathrm{z}(\%)=243\left(40, \mathrm{M}^{+}\right), 244$ (30), 187 (22), 186 (100), 159 (29), 158 (24), 144 (6), 143 (7), 116 (4), 115 (8), 114 (5), 103 (4), 89 (7), 88 (4), 77 (5), 63 (4), 57 (23), 41 (20), 39 (9); $\delta_{\mathrm{H}}(300$ MHz , dimethyl sulfoxide- d_{6}) $1.34\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}$, $\left.4-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.13\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right), 8.10\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 8.25(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, dimethyl sulfoxide- $\left.d_{6}\right) 26.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$,
 $133.6\left(\mathrm{C}_{m}\right), 155.4(=\mathrm{CH}), 163.4\left(\mathrm{C}_{p}\right), 197.7(\mathrm{C}=\mathrm{O})$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, $74.05 ; \mathrm{H}, 7.04 ; \mathrm{N}, 5.76$. Found: C, 74.17; H, 7.11; N, 5.67.

Microorganisms and Media.
For the antifungal evaluation, strains from the American Type Culture Collection (ATCC, Rockville, MD, USA) and the Centro de Referencia Micológica (C, CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, 2000, Rosario, Argentina: Candida albicans ATCC 10231, Candida tropicalis C131, Saccharomyces cerevisiae ATCC 9763, Cryptococcus neoformans ATCC 32264, Aspergillus flavus ATCC 9170, Aspergillus fumigatus ATCC 26934, Aspergillus niger ATCC 9029, Trichophyton mentagrophytes ATCC 9972, Trichophyton rubrum C 113, and Microsporum gypseum C 115 were used. Strains were grown on Sabouraud-chloramphenicol agar slants for 48 h at $30^{\circ} \mathrm{C}$. The strains were maintained on slopes of Sabouraud-dextrose agar (SDA, Oxoid) and subcultured every 15 days to prevent pleomorphic transformations. Spore suspensions were obtained according to reported procedures [20].

Antifungal Susceptibility Testing.
The Minimal Inhibitory Concentration (MIC) of each extract was determined by using broth microdilution techniques following the guideliness of the National Committee for Clinical Laboratory Standards for yeasts (M27-A2) and for filamentous fungi (M-38A) [19]. MIC values were determined in RPMI 1640 (Sigma, St Louis, Mo, USA) buffered to a pH 7.0 with MOPS. The starting inocula were 1×10^{3} to $5 \times 10^{3} \mathrm{CFU} / \mathrm{mL}$. Microtiters trays were incubated at $35^{\circ} \mathrm{C}$ for yeasts and hialophyphomycetes and at $28-30^{\circ} \mathrm{C}$ for dermatophyte strains in a moist, dark chamber, and MICs were recorded at 48 h for yeasts, and at a time according to the control fungus growth, for the rest of fungi. The susceptibilities of the standard drugs Ketoconazole (Janssen, Belgium), Terbinafine (Novartis, Argentina) and Amphotericin B (Sigma, St Louis, Mo, USA) were defined as the lowest concentration of drug which resulted in total inhibition of fungal growth.

For the assay, compounds stock solutions were two-fold diluted with RPMI from $250-0.98 \mu \mathrm{~g} / \mathrm{ml}$ (final volume $=100 \mu \mathrm{~L}$) and a final dimethyl sulfoxide concentration $\leq 1 \%$. A volume of $100 \mu \mathrm{~L}$ of inoculum suspension was added to each well with the exception of the sterility control where sterile water was added to the well instead. The MIC was defined as the minimum inhibitory concentration of the extract which resulted in total inhibition of the fungal growth.

Acknowledgement.

Authors are grateful to COLCIENCIAS, to Universidad del Valle and to the Spanish "Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía", "Servicios Técnicos de la Universidad de Jaén" and Agencia Nacional de Promoción Científica y Tecnológica (PICTR 260) (Argentina) for financial support. This research is part of Project X.7-PIBEAFUN (Iberian-American Project on Search and Development of Antifungal Agents) of the Iberian-American Program for the Development of Science and Technology (CYTED). SC thanks to Universidad de Nariño for fellowship.

REFERENCESAND NOTES

[1a] C. Hulme, V. Gore, Curr. Med. Chem., 10, 51 (2003); [b] A. Dömling, I. Ugi, Angew. Chem., Int. Ed., 39, 3168 (2000); [c] V. Nair, C.

Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen, L. Balagopal, Acc. Chem. Res., 36, 899 (2003); [d] J. Zhu, Eur. J. Org. Chem., 1133 (2003); [e] A. Domling, Curr. Opin. Chem. Biol., 6, 306 (2002); [f] R. V. A. Orru, M. de Greef, Synthesis, 1471 (2003).
[2a] D. Adam, Nature, 421, 571 (2003); [b] C. O. Kappe, Angew. Chem. Int. Ed., 43, 6250 (2004); [c] M. Nüchter, U. Müller, B. Ondruschka, A. Tied, W. Lautenschläger, Chem. Eng. Technol., 26, 1207 (2003).
[3a] A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault, D. Mathé, Synthesis, 1213 (1998); [b] R. S. Varma, Green Chem., 43 (1999); [c] S. Deshayes, M. Liagre, A. Loupy, J.-L. Luche, A. Petit, Tetrahedron, 55, 10851 (1999); [d] R. S. Varma, Clean Prod. Process., 1, 132 (1999); [e] R. S. Varma, Pure Appl. Chem., 73, 193 (2001); [f] J. Cossy, C. Willis, V. Bellosta, L. S. Jalmes, Synthesis, 951 (2002); [g] A. R. Katritzky, S. K. Sing, ARKIVOK, XIII, 68 (2003); [h] A. de la Hoz, A. Díaz-Ortíz, A. Moreno, Chem. Soc. Rev., 34, 164 (2005).
[4] A. Rosowsky, C. E. Mota, S. F. Queener, J. Heterocyclic Chem., 32, 335 (1995).
[5] L. V. G. Nargund, Y. S. R. Reddy, R. Jose, Ind. Drugs, 29, 45 (1991).
[6] A. M. Thompson, A. J. Bridges, D. W. Fry, A. J. Kraker, W. A. Denny, J. Med. Chem., 38, 3780 (1995).
[7] I. O. Donkor, C. L. Klein, L. Liang, N. Zhu, E. Bradley, A. M. Clark, J. Pharm. Sci., 84, 661 (1995).
[8] A. Pastor, R. Alajarin, J. J. Vaquero, J. Alvarez-Builla, M. Fau de Casa-Juana, C. Sunkel, J. G. Priego, I. Fonseca, J. Sanz-Aparicio, Tetrahedron, 50, 8085 (1994).
[9] V. E. Kolla, A. B. Deyanov, F. Y. Nazmetdinov, Z. N. Kashina, L. P. Drovosekova, Khim-Farm Zh., 27, 29 (1993).
[10] N. K. Satti, K. A. Suri, O. P. Suri, A. Kapil, Ind. J. Chem., Sect. B, 32, 978 (1993).
[11] I. D. Bystryakova, I. A. Burova, G. M. Chelysheva, S. V. Zhilinkova, N. M. Smirnova, T. S. Safonova, Khim-Farm. Zh., 25, 31 (1991).
[12] A. B. Deyanov, R. K. Niyazov, F. Y. Nazmetdinov, B. Y.

Syropyatov, V. E. Kolla, M. E. Konshin, Khim-Farm. Zh., 25, 26 (1991).
[13] A. Monge, V. Martinez-Merino, C. Sanmartin, F. J. Fernandez, M. C. Ochoa, C. Berllver, P. Artigas, E. Fernandez-Alvarez, Eur. J. Med. Chem., 24, 209 (1989).
[14] H. Saladowska, A. Bartoszko-Malik, T. Zawisza, Farmaco, 45, 101 (1990).
[15a] V. K. Ahluwalia, R. Batla, A. Khurana, R. Kumar, Ind. J. Chem. Sect. B, 29, 1141 (1990); [b] I. Devi, H. N. Borah, P. J. Bhuyan, Tetrahedron Lett., 45, 2405 (2004).
[16a] A. L. Beckwith, US Patent US 3947416, 1976; Chem. Abstr., 85, 33073j (1976); [b] N. Kihara.; I. Tomino; M. Takei, Jpn.Patent 61076488 A2 [76488], 1986; Chem. Abstr., 105, 208915w (1986).
[17a] J. Quiroga, A. Hormaza, B. Insuasty, M. Nogueras, A. Sánchez, N. Hanold, H. Meier, J. Heterocyclic Chem., 34, 521 (1997); [b] J. Quiroga, M. Alvarado, B. Insuasty, M. Nogueras, A. Sánchez, J. Cobo, J. Heterocyclic Chem., 35, 1309 (1998); [c] J. Quiroga, M. Alvarado, B. Insuasty, M. Nogueras, A. Sánchez, M. D. López, J. Heterocyclic Chem., 36, 113 (1999); [d] J. Quiroga, H. Insuasty, B. Insuasty, R. Abonía, J. Cobo, A. Sánchez, M. Nogueras, Tetrahedron, 58, 4873 (2002); [e] J. Quiroga, C. Cisneros, B. Insuasty, R. Abonía, M. Nogueras, A. Sánchez, Tetrahedron Lett., 42, 5625 (2001).
[18a] J. Quiroga, J. Portilla, B. Insuasty, R. Abonía, M. Nogueras, M. Sortino, S. Zacchino, J. Heterocyclic Chem., 42, 61 (2005); [b] A. Esteves- Souza, A. Echevarría, I. Vencato, M. L. Jimeno, J. Elguero, Tetrahedron, 57, 6147 (2001); [c] A. A. S. El-Ahl, S. A. A. El Bialy, M. A. Ismail, Heterocycles, 66, 1316 (2001); [d] H. Hirota, H. Sajiki, K. Kubo, M. Kido, K. Nakagawa, Tetrahedron, 52, 9971 (1996); [e)] W. Pfleiderer, F. Sagi, L. Groezinger, Chem. Ber., 99, 3530 (1966).
[19a] NCCLS, National Committee for Clinical Laboratory Standards, 2002, Method M27-A2, $2^{\text {nd }}$ ed, Wayne Ed.; Vol. 22 (15), pp 129; [b] NCCLS, National Committee for Clinical Laboratory Standards, 2002, Method M-38A, $2^{\text {nd }}$ ed, Wayne Ed.; Vol. 22 (16), pp 1-27.
[20] L. Wright, E. Scott, S. Gorman, J. Antimicrob. Chemother, 12, 317 (1983).

